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Together these two techniques enable our SELF compiler to split off a copy of an entire loop,
optimized for the common-case types.
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dispatched procedure calls and type tests. The resulting machine code is twice as fast as that generated
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1  Introduction

Dynamically-typed object-oriented languages have historically been much
slower in run-time performance than traditional languages like C and Fortran. Our
measurements of several Smalltalk systems on personal computers and worksta-
tions [21] indicate that their performance is between 5% and 20% of the perfor-
mance of optimized C programs. This disparity in performance is caused largely by
the relatively slow speed and high frequency of message passing and the lack of
static type information to reduce either of these costs. This paper describes new
techniques for extracting and preserving static type information in dynamically-
typed object-oriented programs.

This work continues our earlier work on the SELF programming language [12,
22]. SELF is a new dynamically-typed object-oriented language in the spirit of
Smalltalk-801 [5], but is novel in its use of prototypes instead of classes and its use
of messages instead of variables to access state. These features make SELF

programs even harder to run efficiently than other dynamically-typed object-
oriented languages, since SELF programs send many more messages than equiva-
lent Smalltalk programs.

As part of our earlier work we built an optimizing compiler for SELF that
pioneered the use of customization, type prediction, and message splitting [2, 3].
These techniques provided the compiler with much more static type information
than was previously available, enabling it to aggressively inline away many of the
costly message sends without sacrificing source-code compatibility. This SELF

compiler achieved a performance of between 20% and 25% of optimized C on the
Stanford integer benchmarks [9], twice that of the fastest Smalltalk implementation
on the same machine.

While this performance is a clear improvement over comparable systems, it is
still not competitive with traditional languages. To narrow the gap even further, we
have developed and implemented iterative type analysis and extended message
splitting in our new SELF compiler. These techniques provide the compiler with
more accurate static type information and enable it to preserve this type informa-
tion more effectively. These techniques are especially important when optimizing
loops and often lead to more than one version of a loop being compiled, each
version optimized for different run-time types. Using these techniques, our new
SELF compiler produces code that runs almost half as fast as optimized C
programs, without sacrificing dynamic typing, overflow and array bounds
checking, user-defined control structures, automatic garbage collection, and
complete source-level debugging of optimized code.

Traditional compilers can be divided into a front-end (parser) and a back-end
(optimizer and code generator). To generate good code for a dynamically-typed
object-oriented language, we have inserted a new phase between the front-end and

1Smalltalk-80 is a trademark of ParcPlace Systems, Inc.
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the back-end. This phase performs type analysis, method inlining, and message
splitting to construct the control flow graph from abstract syntax trees of the source
code. A more traditional back-end performs data flow analysis, global register allo-
cation, and code generation from this control flow graph.

This paper describes the new intermediate phase of our compiler. The next
section briefly describes previously published techniques used in our SELF

compiler. Section 3 presents our type system, and describes how type analysis
works for straight-line code. Section 4 extends the type analysis to handle merges
in the control flow graph, and describes extended message splitting. Section 5
completes type analysis and message splitting by describing iterative type analysis
for loops, and presents a simple example of compiling multiple versions of a loop.
Section 6 compares the performance of our new SELF system against optimized C,
the original SELF compiler, and versions of the new SELF compiler with selected
optimizations disabled. Section 7 discusses related work.

2 Background

The new techniques presented in this paper build upon those introduced in the
previous SELF compiler, including customization, type prediction, message split-
ting (called local message splitting in this paper), message inlining, and primitive
inlining [2, 3].

• Customized compilation. Existing compilers for Smalltalk-80 (as well as most
other object-oriented languages) compile a single machine code method for a
given source code method. Since many classes may inherit the same method,
the Smalltalk-80 compiler cannot know the exact class of the receiver. Our
SELF compiler, on the other hand, compiles a different machine code method
for each type of receiver that runs a given source method. The advantage of this
approach is that our SELF compiler can know the type of the receiver of the
message at compile-time.

• Type prediction. Sometimes the name of the message is sufficient to predict the
type of its receiver. For example, several studies [20] have shown that the
receiver of a + message is nine times more likely to be a small integer than any
other type. Our compiler inserts type tests in these cases so that subsequent
code may exploit the type information in the common case.

• Message inlining. Once the type of a receiver is known, the compiler can
optimize away the message lookup by performing it at compile-time, and then
inline the code invoked by the message.

• Primitive inlining. SELF also includes primitive operations such as integer
addition. Rather than compiling a call to an external routine, the compiler can
directly compile many primitives in line. If the primitives include type tests,
the compiler’s type information may be used to eliminate them.
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3 Simple Type Analysis

To compute the static type information necessary for message inlining, the
compiler builds a mapping from variable names to types at each point in the
program (i.e. between every node in the control flow graph). This mapping is
computed from the nodes in the control flow graph, such as assignment nodes, run-
time type test nodes, and message send nodes. The type of a variable describes all
the information the compiler knows about the current value of the variable, and as
such differs from the standard notion of data type in a traditional statically-typed
language.

3.1 The Type System

A type specifies a non-empty set of values. A variable of a particular type is guar-
anteed to contain only values in the type’s set of values at run-time. A type that
specifies a single value (called a value type) acts as a compile-time constant. The
type that specifies all possible values provides no information to the compiler and
is called the unknown type.

A type that specifies all values that are instances of some class2 (called a class
type) provides the compiler with both format and inheritance information for vari-
ables of the type, much like a traditional data type. Messages sent to a variable of
class type can be looked-up at compile-time and inlined. A type that specifies a
subrange of the values in the integer class type is called an integer subrange type.
The compiler treats integer value types and the integer class type as extreme forms
of integer subrange types.

A type may also specify the set union of several types or the set difference of two
types. The chart above summarizes the kinds of types in our type system, the infor-
mation they provide to the compiler, and how they are created.

2Since SELF has no classes, our implementation introduces user-transparent maps to provide
information and space efficiency similar to that of classes. Thus in our system the class type becomes
the set of all values that share the same map.

Types in the SELF Compiler

type name set description static information source

value singleton set compile-time constant literals, constant slots,
true and false type tests

integer set of sequential integer ranges arithmetic and comparison
  subrange   integer values primitives

class set of all values format and inheritance self, results of primitives,
  w/ same class integer type tests

unknown set of all values none data slots, message results,
up-level assignments

union set union of types union results of primitive operations

difference set difference of types difference failed type tests
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3.2 Type Analysis Rules

At the start of the method, the type mapping contains bindings for the receiver
and each argument. Since our compiler generates customized versions of a source
method (see section 2), the class of the receiver is known at compile-time for the
version being compiled. Therefore, the receiver is initially bound to the corre-
sponding class type. Our system doesn’t currently customize based on the types of
arguments, and so the arguments are initially bound to the unknown type.

3.2.1 Simple Node Analysis

A declaration of a local variable adds a new binding to the type mapping. Since
local variables in SELF are always initialized to compile-time constants, each
binding will be to some value type. For example, since most variables are (implic-
itly) initialized to nil, their types at the start of their scopes would be the nil value
type.

Each node in the control flow graph may alter the type bindings as type informa-
tion propagates across the node. A local assignment node simply changes the
binding of the assigned local variable to the type of the value being assigned. A
memory load node (e.g. implementing an instance variable access) binds its result
temporary name to the unknown type (since the compiler doesn’t know the types
of instance variables).

Our compiler computes the type of the result of integer arithmetic nodes using
integer subrange analysis. For example, the following rule is used to determine the
result type for the integer addition node:3

Integer compare-and-branch nodes also use integer subrange analysis. However,
instead of adding a binding for a result, compare-and-branch nodes alter the type
bindings of their arguments on each outgoing branch. For example, the following
rule is used to alter the argument type bindings for the compare-less-than-and-
branch node:4

3This node is not the integer addition primitive, but just an add instruction. Type checking and
overflow checking are performed by other nodes surrounding the simple add instruction node.

z ← x + y

x: [xlo..xhi], y: [ylo..yhi]

z: [xlo+ylo..xhi+yhi] ∩ [minInt..maxInt]

x < y

x: [xlo..xhi], y: [ylo..yhi]

x: [max(xlo,ylo)..xhi]

y: [ylo..min(xhi,yhi)]

x: [xlo..min(xhi,yhi-1)]

y: [max(xlo+1,ylo)..yhi]
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Run-time type test nodes are similar to compare-and-branch nodes. Along the
success branch of the test the tested variable is rebound to the type of the test; along
the failure branch the variable is rebound to the set difference of the incoming type
and the tested type. For example, the following rule is used to alter the argument
type binding for the integer type test:

3.2.2 Message Send Node Type Analysis, Type Prediction, and Inlining

To propagate types across a message send node, the compiler first attempts to
inline the message. The compiler looks up the type bound to the receiver of the
message. If the type is a class type (or a subset of a class type, such as a value type
or an integer subrange type), the compiler performs message lookup at compile-
time, and replaces the message send node with either a memory load node (for a
data slot access), a memory store node (for a data slot assignment), a compile-time
constant node (for a constant slot access), or the body of a method (for a method
slot invocation). If a method is inlined, new variables for its formals and locals are
created and added to the type mapping. The type of the result of a message send
node that is not inlined is the unknown type.

If the type of the receiver of the message is unknown (or more general than a
single class type), the compiler tries to predict the type of the receiver from the
name of the message (such as predicting that the receiver of a + message is likely
to be an integer). If it can successfully predict the type of the receiver, the compiler
inserts a run-time type test before the message to verify the guess, and uses local
message splitting to compile two versions of the predicted message.

3.2.3 Primitive Operation Node Type Analysis, Range Analysis, and Inlining

In addition to sending messages, SELF programs may invoke primitive opera-
tions. These primitives include integer arithmetic, array accesses, object cloning,
and basic graphics primitives. All primitive operations in SELF are robust: the
types of arguments are checked at the beginning of the primitive and exceptional
conditions such as overflow, divide-by-zero, and array-access-out-of-bounds are
checked. A call to a primitive can optionally pass a user-defined failure block to
invoke in case one of these exceptional conditions occurs; the result of the failure
block is used as the result of the primitive operation. If the SELF programmer
doesn’t provide an explicit failure block, a default failure block is passed that
simply calls a standard error routine when invoked.

4In all control flow graph diagrams, conditional branch nodes have the true outgoing branch on
the left, and the false outgoing branch on the right.

x int?

x: type

x: type - intx: int
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To propagate types across a primitive operation node, the compiler first attempts
to constant-fold the primitive. If the primitive has no side-effects and the arguments
are value types (i.e. compile-time constants), then the compiler executes the prim-
itive at compile-time and replaces the primitive node with the compile-time
constant result. Sometimes the compiler can constant-fold a primitive even if the
arguments aren’t compile-time constants. For example, if the arguments to an
integer comparison primitive are integer subranges that don’t overlap, then the
compiler can execute the comparison primitive at compile-time based solely on
subrange information.

If the compiler can’t constant-fold the primitive, and the primitive is small and
commonly used (such as integer arithmetic and array accesses), then the compiler
inlines the primitive, replacing the call to the primitive with lower-level nodes that
implement the primitive. For example, the following set of nodes implement the
integer addition primitive:

By analyzing the nodes that make up the primitive, the compiler is frequently
able to optimize away the initial type tests and even the overflow check. For
example, if the arguments to an integer arithmetic primitive are integer subranges
that cannot cause an overflow, then the compiler can constant-fold away the initial
type tests, the overflow check, and the failure block, leaving a single add instruc-
tion node. As it eliminates the type and overflow tests, the compiler comes closer
and closer to its goal of eliminating the performance disadvantage of robust prim-
itives. If all the tests can be eliminated, the failure block can be eliminated, which
saves space, but more importantly, eliminates subsequent type tests of the result of
the primitive.

The type of the result of an inlined primitive can be computed by propagating
types across the nodes implementing the primitive. Even if the primitive isn’t

arg2 int?

arg1 int?

sum ← arg1 + arg2

no overflow?

sum ← fail
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inlined, the compiler binds the result of the primitive to the result type stored in a
table of primitive result types. The original SELF compiler could also constant-fold
and inline primitive calls, except it did no range analysis and so couldn’t constant-
fold a comparison primitive based solely on integer subrange information or elim-
inate overflow checks and array bounds checks.

4 Extended Message Splitting

Both the original and the new SELF compilers use message splitting to take
advantage of type information that otherwise would be lost to merges in the control
flow graph (see [2, 3]). The original SELF compiler was only able to split messages
that immediately followed a merge point; we call this local message splitting. Our
new SELF compiler performs enough type analysis to detect all splitting opportu-
nities, no matter how much code separates the message send from the merge point;
we call this extended message splitting.

To propagate type information across a merge node, the compiler constructs the
type mapping for the outgoing branch of the merge node from the type mappings
for the incoming branches. For each variable bound to a type in all incoming
branches, the compiler merges the incoming types. If all incoming types are the
same, then the outgoing type is the same as the incoming type. If the types are
different, then the compiler constructs a new merge type containing the incoming
types. A merge type is similar to a union type, except that the compiler knows that
the dilution of type information was caused by a merge in the control flow graph.
In addition, a merge type records the identities of its constituent types, rather than
recording the result of the set union of the merged types. For example, the integer
class type merged with the unknown type forms a merge type that contains both
types as distinct elements, rather than reducing to just the unknown type as a set
union would produce (recall that the unknown type specifies all possible values,
and so contains the integer class type).

The compiler takes advantage of merge types when propagating type information
across message send nodes. If the type of the receiver of the message is a merge
type, containing types of different classes, the compiler may elect to split the
message and all the intervening nodes back through the control flow graph up to
the merge point that diluted the type information. This splitting creates two copies
of the nodes in the graph from the send node back to the merge point; the receiver
of each copy of the split message send node now has a more specific type, allowing

x: t2x: t1

x: {t1, t2}

merge
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nodes

x: t2x: t1

x: {t1, t2}

send msg to x

x: {t1, t2}

x: t1

send msg to x

x: t1

x: t1

x: t2

send msg to x

x: t2

x: t2

x: {t1, t2}

merge

merge

Before Extended Splitting

x: t1

inline t1::msg

x: t1

x: t1

x: t2

x: t2

x: t2

x: {t1, t2}

merge

inline t2::msg

nodes nodes

nodes nodes

After Extended Splitting

After Inlining
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the compiler to do normal message inlining for each copy of the message sepa-
rately; without splitting, the original message send couldn’t be inlined.

Of course, uncontrolled extended message splitting could lead to a large increase
in the size of the graph and thus in compiled code size and compile time. To limit
the increase in code size, our compiler only performs extended message splitting
when the number of copied nodes is below a fixed threshold, and only copies nodes
along the “common case” branches of the control flow graph (i.e. along branches
that aren’t downstream of any failed primitives or type tests).

5 Type Analysis For Loops

Performing type analysis for loops presents a problem. The loop head node is a
kind of merge node, connecting the end of the loop back to the beginning. Thus the
type bindings at the beginning of the loop body depend not only on the type bind-
ings before the loop, but also on the bindings at the end of the loop, which depend
on the bindings at the beginning. This creates a circular dependency.

One solution to this circularity would be to construct a type binding table for the
loop head that is guaranteed to be compatible with whatever bindings are computed
for the end of the loop. This can be done by rebinding all locals assigned within the
loop to the most general possible type: the unknown type. We call this strategy
pessimistic type analysis. However, it effectively disables the new SELF compiler’s
type analysis system, including range analysis, at precisely the points that are most
important to performance: the inner loops of the program. Without more accurate
type information, the compiler is forced to do type prediction and insert run-time
type tests to check for expected types of local variables. Since the original SELF

compiler performed no type analysis, local variables were always considered to be
of unknown type, and so the original SELF compiler could be thought of as using
pessimistic type analysis for loops.

Another solution to the circularity would be to use traditional iterative data flow
techniques [1] to determine the type bindings for the loop before doing any inlining
within the loop. However, most locals changed within the loop would be assigned
the results of messages, and since these message aren’t inlined yet, their result
types are unknown, and so most locals would end up being bound to the unknown

loop
body
nodes

x: t1

x: ???

loop head
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type by the end of the loop body. The net effect of standard iterative data flow anal-
ysis for type information is the same as for the pessimistic type analysis: assigned
locals end up bound to the unknown type.

5.1 Iterative Type Analysis

The solution adopted in the new SELF compiler is called iterative type analysis.
Our compiler first uses the type bindings at the head of the loop to compile the body
of the loop, with as much inlining and constant-folding as possible based on those
types. It then compares the type bindings for the end of the loop with the head of
the loop. If they are the same, then the compiler has successfully compiled the loop
and can go on to compile other parts of the program. If some types are different,
then the compiler forms the appropriate merge types for those locals whose types
are different, and recompiles the body of the loop with the more general type bind-
ings. This process iterates until the fixed point is reached, where the type bindings
of the head of the loop are compatible with the type bindings at the end of the loop.

Iterative type analysis computes type bindings over a changing control flow
graph, building the control flow graph as part of the computation of the type
binding information. Standard data flow techniques, on the other hand, operate
over a fixed control flow graph. Iterative type analysis is important for dynami-
cally-typed object-oriented languages, where transformations of the control flow
graph (such as inlining) are crucial to compute accurate type information.

To reach the fixed point in the analysis quickly, loop head merge nodes compute
the type binding table in a slightly different way than normal merge nodes. If the
loop head and the loop tail produce different value or subrange types within the
same class type for a particular local, the loop head merge node generalizes the
individual values to the enclosing class type (instead of forming a normal merge
type). For example, if the initial type of a local is the 0 value type, and the ending
type is the 1 value type (as it would be for a simple loop counter initialized to zero),
the loop head node rebinds the local to the integer class type rather than the merge
of the two value types. Then the type automatically handles all future integer values
of the counter in one iteration. This sacrifices some precision in type analysis, but
saves a great deal of compile time and does not seem to hurt the quality of the
generated code.

5.2 Iterative Type Analysis and Extended Message Splitting

The combination of extended message splitting and iterative type analysis makes
it possible to compile multiple versions of loops. For example, consider a loop head
that merges two different types together, and so creates a merge type. The compiler
should be free to split the merged types apart to inline a message send inside the
body of the loop, and so may actually split the loop head node itself into two copies,
each with different type information. Each loop head thus starts its own version of
the loop, compiled for different type bindings.
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When the compiler finally reaches the loop tail node, after compiling the body of
the loop, there may be multiple loop heads to choose from. The compiler first tries
to find a loop head that is compatible with the loop tail, and if it finds one connects
the loop tail to the compatible loop head. If it doesn’t find a compatible loop head,
it tries to split the loop tail node itself to create a copy of the loop tail that is compat-
ible with one of the loop heads. If the type of a local at the loop tail is a merge type,
and one of the loop heads contains a binding that is a subset of the merge type, then
the loop tail is split to generate a loop tail that only contains the matching subset,
and this copy is connected to its matching loop head. The compiler then attempts
to match and/or split the other loop tail.

loop
body1

x: t1

x: t1

loop head

x: {t1, t2}

loop
body2

x: t1

x: {t1, t2}

loop head

x: {t1, t2, t3}

loop
body3

x: t1

x: {t1, t2 t3}

loop head

x: {t1, t2, t3}

first iteration:

{t1, t2} ⊄ t1

not compatible

second iteration:

{t1, t2, t3} ⊄ {t1, t2}

not compatible

last iteration:

{t1, t2, t3} ⊂ {t1, t2, t3}

compatible
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x: t2x: t1

x: {t1, t2}

loop body

x: {t1, t2}

x: t1

inline t1::msg

x: t1

x: t1

x: t2

inline t2::msg

x: t2

x: t2

x: {t1, t2}

send msg to x

x: t1 x: t2

merge

x: t1

x: t1

x: t1

x: t2

x: t2

x: t2

x: t1 x: t2

loop head

loop head

loop headloop head

loop head

loop body loop body

loop bodyloop body

inline t1::msg inline t2::msg

Before Extended Splitting

After Splitting Loop Tail

After Extended Splitting and Inlining
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Only if a loop tail doesn’t match any of the available loop heads does the
compiler give up, throw away the existing versions of the loop, and recompile it
with more general type bindings. To compute the type bindings for the head of the
new loop, the compiler forms merge types from the bindings for the old loop heads
and the remaining unattached loop tail.

Compatibility needs to be defined carefully to avoid losing type information. A
loop tail is compatible with (matches) a loop head if for each type binding the type
at the loop head contains the type at the loop tail and the type at the loop head does
not sacrifice class type information present in the loop tail. This means that the
unknown type at the loop head is not compatible with a class type at the loop tail.
Instead, the type analysis will iterate, forming a merge type of the unknown type
and the class type at the loop head. This has the advantage that the body of the loop
may split off the class type branch from the unknown type branch, and generate
better code along the class type branch.

5.3 An Example

Consider a very simple SELF function that sums all the integers from 1 up to its
argument n:

triangleNumber: n = (
| sum <- 0 | “declare and init sum”
1 upTo: n Do: [ | :i |
“i is loop index”

sum: sum + i. “increment sum”
].
sum ). “return sum”

This function uses the user-defined control structure upTo:Do: to iterate through
the numbers from 1 to n-1. After inlining the control structure down to primitive
operations, the compiler produces the following:

triangleNumber: n = (
| sum <- 0. i <- 1. |
loop:

if i < n then
sum: sum + i.
i: i + 1.
goto loop

sum ).

The compiler uses iterative type analysis to compile the body of the loop. The
first time through, sum is initially bound to the 0 value type and i is initially bound
to the 1 value type. Both + messages will get inlined down to integer addition prim-
itives and constant-folded. At the end of the loop, sum is bound to the 1 value type
and i is bound to the 2 value type. These types are incompatible with the constants
assumed at the head of the loop, and so type analysis iterates.
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The second iteration starts by generalizing the types of both sum and i to the
integer class type (remember that loop head merge nodes intentionally generalize
their merge types to speed the analysis). After completing this iteration (and
assuming that the result type of a failed primitive is the unknown type), the
compiler generates the control flow graph pictured below.5 The type tests for sum
and i are optimized away using the type information computed for the loop, and
the overflow check for the increment of i is optimized away using integer subrange
analysis.

The portion of this version of the loop in the gray box is the best one could expect
a compiler to achieve.6 Unfortunately, the loop tail still doesn’t match the loop head
(e.g. sum: {int, ?} ⊄ int), and so type analysis must iterate. Without extended splitting,

5? denotes the unknown type.
6The compiler can’t eliminate the remaining overflow check, since it is possible to pass in an n

argument that would cause sum to overflow (e.g. the largest possible integer).

n int?

i < n

n: ?, sum: int, i: int

n: int

sum ← sum + i

no overflow?

sum ← fail block

return

sum: int

sum: ?
merge

sum: {int, ?}

i ← i + 1

nodes

n: ?-int

merge

i: [minInt+1..maxInt]

n: {int, ?-int}, sum: {int, ?}, i: {int, ?}

i: [minInt..maxInt-1]

n: ?-int, sum: ?, i: ?

loop head

more

Second Iteration of
TriangleNumber Example
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the compiler would have to compile a single version of the loop that worked for all
cases. This more general version would need five run-time type tests before the <
and + operations to test for integer arguments. With extended splitting, however,
the compiler is able to eliminate all run-time type tests from a common-case
version of the loop, generating exactly what’s in the gray box; another version will
be generated to handle overflows and a non-integer n.

To restart the type analysis, the compiler builds a new loop initialized with the
types resulting from the previous iteration. Analysis then proceeds similarly as
before, except that when analyzing the < and + messages, the compiler splits off
the integer receiver and argument cases from the non-integer cases, splitting the
loop head in the process.7 When the loop tail is reached, the compiler splits it into
two tails, and connects each to its corresponding loop head. The final control flow
graph is pictured below:

The combination of extended splitting and iterative type analysis has allowed the
compiler to optimize all type tests from the common case. A compiler for a stati-
cally-typed, non-object-oriented language could do no better. 

7The actual workings of the compiler, and the final control flow graph, are a bit more complex than
those presented here. We have chosen to simplify the exposition of the ideas by glossing over some
of these messy details.

loop

general

n: ?, sum: int, i: int

n: ?-int

n int?

i < n

n: int

sum ← sum + i

no overflow?

sum ← fail blocksum: int

sum: ?i ← i + 1

i: [minInt+1..maxInt]

i: [minInt..maxInt-1]

loop head

return

loop head

loop head
n: int, sum: int, i: int

body

n: ?, sum: 0, i: 1

n: {int, ?-int}
sum: {int, ?}

i: {int, ?}

Final Results of TriangleNumber Example
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5.4 Discussion

Combining extended message splitting with iterative type analysis has several
beneficial effects. Our compiler can generate multiple versions of loops, each
version assuming different type bindings and therefore optimized for different
cases at run-time. This is especially important to isolate the negative effects of
primitive failure from the normal case of primitive success. For example, a loop
that performs arithmetic on locals in the body might get two versions compiled:
one that knows all the locals are integers, and a second that handles locals of any
type. The first version will branch to the second version only if a primitive fails; if
no primitives fail (the common case) control will remain in the fast integer version
of the loop. Robustness of integer arithmetic primitives has been implemented at
the cost of only an overflow check; no extra type tests are needed if the failure
never happens.

Extended message splitting also may “hoist” type tests out of a loop, as it did
with the n integer type test in the above triangleNumber: example. If the initial
types of some variables are unknown (such as for method arguments), and the body
of a loop does arithmetic on the variables, our compiler will compile a version of
the loop for the unknown types, and embed type tests to check for integer values at
run-time. If the values turn out to be integers, the second iteration of the loop will
branch to another version that was compiled assuming integer types for the locals.
Control will remain in the second version of the loop as long as the locals remain
integers (e.g. until an overflow occurs). The first version of the loop contains the
type tests, while the second version contains none. If the normal case is to have
integer values, then the type tests effectively have been hoisted out of the integer
version into the unknown version, which is executed only on the first loop iteration.

Extended message splitting and iterative type analysis have been carefully
designed to automatically compile multiple versions of loops. No additional imple-
mentation techniques or special algorithms are needed. No special treatment of
integers or loop control variables is needed, nor is any special work performed to
hoist type tests out of loops. The compiler just uses type prediction and message
splitting to create and preserve the type information needed to inline messages and
avoid type tests and sometimes ends up creating multiple versions of a loop.

Of course, extended message splitting exacts a price in compile time and
compiled code space. However, compiling an additional specialized version of
most loops is probably not too costly. This is because the specialized version tends
to be much smaller than the more general version of the loop that is littered with
type tests, message sends, and failure blocks. Unfortunately, our current implemen-
tation sometimes compiles more than just two versions of a loop; we plan to work
on minimizing the number of extra versions of loops that get compiled.
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6 Performance Measurements

We measured the performance of the compiled code, the compiled code size, and
compile time. All measurements were taken on a Sun-4/260 SPARC-based work-
station. Our measurements are summarized for four sets of benchmarks: 

• stanford is the set of eight integer benchmarks from the Stanford benchmark
suite. These benchmarks typically measure the speed of accessing and iterating
through fixed-length arrays of integers.

• stanford-oo consists of the same eight benchmarks rewritten in an object-
oriented style. The changes are chiefly to redirect the target of messages from
the benchmark object to the data structures manipulated by the benchmark
(such as the array being sorted); none of the underlying algorithms were
changed, nor were any source-level optimizations performed as part of the
rewrite. The puzzle benchmark was not rewritten, but is included in this group
anyway in the interest of fairness.

• small is a group of “micro-benchmarks” used as an initial test suite when
implementing the new techniques.

• richards is a larger, operating system simulation benchmark, written in about
400 lines of SELF source code.

The benchmarks were run with five compilers:

• optimized C is the C compiler supplied with SunOS 4.0 and invoked with the
-O2 flag. For richards, which is written in C++, the C version includes the
effect of the AT&T cfront 1.2.1 preprocessor.

• ST-80 refers to the ParcPlace Systems Version 2.4 Smalltalk-80
implementation. This system uses dynamic compilation [4], and is tied with
Version 2.5 for the distinction of being the fastest commercially available
Smalltalk system.

• old SELF-89 refers to the measurements taken for the old SELF compiler in early
1989 and published in [2]. This was a well-tuned SELF system with a simpler
compiler based on expression trees, customization, and local splitting.

• old SELF-90 is our current, production SELF system which uses the old SELF

compiler. This system includes more elaborate semantics for message lookup
and blocks, and is not as highly tuned as it was a year ago. For these reasons,
the performance has worsened from last year’s numbers. However, comparing
its performance to that of the new SELF compiler allows us to isolate the effects
of the improvements in the new compiler.

• new SELF is our new SELF compiler as described in this paper, but without
compiling multiple versions of loops. At the time of this writing, the part of the
new compiler that recomputes the type information within a loop after splitting
a loop head is broken. The results we have observed in the past for compiling
multiple versions of loops leads us to expect even better performance when this
part of the compiler is repaired.
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The rest of this section summarizes the results. Raw data for individual bench-
marks are given in the appendices.8

6.1 Speed of Compiled Code

These results in the above table show that the new SELF compiler is around 40%
the speed of optimized C for the stanford-oo benchmarks. This performance is
four times faster than Smalltalk-80 and more than twice as fast as the current SELF-
90 version of the original compiler. Some of this improvement over the original
SELF compiler results from better register allocation and delay slot filling. Much
of the rest can be credited to better type analysis and especially the inclusion of
range analysis.

8Since this paper was originally published, the compiler’s implementation has been refined and
made reliable. Execution performance is faster than reported in this paper (over 60% the speed of
optimized C for the stanford and stanford-oo benchmarks), and compilation speed is between one
and two orders of magnitude faster (about the same speed as the optimized C compiler).

Speed of Compiled Code (as a percentage of optimized C)
median ( min — max )

small stanford stanford-oo richards

ST-80 10% (5-10) 9% (5-53) 9% (5-80) 9%

old SELF-89 19% (10-48) 28% (13-56) 26%

old SELF-90 11% (7-12) 14% (9-41) 19% (9-69) 17%

new SELF 24% (21-53) 25% (19-47) 42% (19-91) 21%

Compile Time and Code Size
median / 75%-ile / max

small stanford+stanford-oo puzzle richards

compile time (in seconds of CPU time)

optimized C 3.0 / 3.4 / 3.9 9.1 13.4

old SELF-90 0.3 / 0.3 / 0.4 0.7 / 0.8 / 1.1 6.9 2.1

new SELF 5.2 / 5.7 / 6.4 21.1 / 31.9 / 123.3 362.3 35.6

compiled code size (in kilobytes)

optimized C 2.7 / 2.9 / 3.3 5.0 6.1

old SELF-90 2.6 / 2.9 / 5.3 11.6 / 13.2 / 18.5 81.3 34.3

new SELF 1.5 / 1.6 / 1.8 7.7 / 10.2 / 16.2 41.3 25.5



116 CHAMBERS AND UNGAR

The richards benchmark is worthy of further mention. Its performance is not as
good as some of the other benchmarks, and we have traced this problem to a single
bottleneck: the call site that runs the next task on the task queue. This call is poly-
morphic (since different tasks handle the run message differently), and by
invoking a different procedure almost every call defeats the traditional inline-
caching optimization [4] intended to speed monomorphic call sites. The result is
that the overhead to handle this single call site is the same as the total optimized C
time of the benchmark. We think we could nearly eliminate this overhead by gener-
ating call-site-specific inline-cache miss handlers. If implemented, this would
probably increase the performance of the richards benchmark to 25%.

6.2 Compile Time

We have not yet optimized compile time in the new compiler and the measure-
ments suggest we will need to. Almost all of benchmarks take from 15 to 35
seconds to compile with the new compiler. We expect that these numbers can be
reduced quite substantially because the old SELF compiler compiles most of the
programs in less than a second. By contrast, the C compile takes about three
seconds for most of these programs. We suspect that new SELF compiler contains
a few exponential algorithms for data flow analysis and register allocation, and we
hope to improve them.

6.3 Code Space

The new compiler’s generated code size is about four times larger than for the
optimized C programs. However, the difference cannot be blamed solely on our
new techniques. In fact, the original SELF compiler uses even more space than the
new SELF compiler. A substantial part of the space overhead can be attributed to
the large inline caches for dynamically-bound procedure calls and to code handling
primitive failures like overflow checking and array bounds checking. We have
done only rudimentary work on conserving compiled code space, and expect to be
able to reduce this space overhead.

Even with the current compiled code sizes, large SELF applications can be
executed without an exorbitant amount of code space. For example, our prototype
graphical user interface and its supporting data structures are written in 7000 lines
of SELF source code and compile to less than a megabyte of machine code (more
space is currently used to store debugging and relocation information for the
compiled code). In addition, since SELF compiles code dynamically, it need only
maintain a working set of code in memory; unused compiled code is flushed from
the code cache to be recompiled when next needed. Although final proof must
await larger SELF programs, we believe that extra code space will not be a
problem.
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7 Related Work

Other systems perform type analysis over programs without external type decla-
rations. ML [14] is a statically-typed function-oriented language in which the
compiler is able to infer the types of all procedures and expressions and do static
type checking with virtually no type declarations. Researchers have attempted to
extend ML-style type inference to object-oriented languages, with some success
[15, 16, 23, 24]. However, most of these approaches use type systems that describe
an object’s interface or protocol, rather than the object’s representation or method
dictionary. While this higher-level view of an object’s type is best for flexible poly-
morphic type-checking, it provides little information for an optimizing compiler to
speed programs.

A different approach is taken by the Typed Smalltalk project [10, 11]. Their type
system is based on sets of classes, and a variable’s type specifies the possible object
classes (not superclasses) that objects stored in the variable may have. If the
number of possible classes associated with a variable is small, then messages sent
to the variable can be inlined (after an appropriate series of run-time type tests).

The Typed Smalltalk system includes a type inferencer that infers the types of
most methods and local variables based on the user-declared types of instance vari-
ables, class variables, global variables, and primitives [6, 7]. The type inferencer is
based on abstract interpretation of the program in the type domain, and an expres-
sion is type-correct if and only if the abstract interpretation of the expression in the
context of the current class hierarchy is successful. The type of a method is deter-
mined by partially evaluating the abstract interpretation of the body of the method,
and as such frequently cannot be completely determined to a simple type, but may
contain unresolved constraints on the types of the method’s arguments. These
constraints must be checked at each call site.

This type-checking and type inference system is very powerful and should be
able to type-check much existing Smalltalk-80 code. It is also suitable for opti-
mizing compilation, since the types of variables and expressions describe their
possible representations and method dictionaries. Unfortunately, their system
could take a long time to infer the type of an expression, since an arbitrarily large
portion of the entire system will be abstract-evaluated to compute the type of the
expression.

None of these statically-typed systems handles dynamically-typed languages like
SELF (the Typed Smalltalk systems disallows Smalltalk programs that cannot be
statically type-checked). Our type analysis system is designed to compute as much
exact type information about the receivers of messages as possible, while still
handling uncertain and unknown types gracefully. It operates with a limited
amount of initial type information (just the type of the receiver and the types of
constant slots), and so attempts to extract and preserve as much new type informa-
tion as it can.
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Range analysis is performed in many traditional optimizing compilers. However,
Fortran compilers typically determine subrange information by looking at the
bounds specified in do loops. This approach doesn’t work in languages with user-
defined control structures like SELF, Smalltalk, and Scheme [18], since the
compiler has no fixed do construct to look for loop index ranges. Our approach of
computing range information based on primitive arithmetic and comparison oper-
ators rather than high-level statements lets our compiler perform range-based opti-
mizations (like eliminating overflow checks and array bounds checks) in the
context of user-defined control structures.

A useful extension to this scheme would be to record the results of comparisons
with non-constant integer values, in case the same comparison is performed again.
This would help eliminate many array bounds checks where the exact size of the
array is unknown, but the index is still always less than the array length, and so the
array bounds check can be eliminated. Our current range analysis cannot eliminate
these bounds checks, since the integer subrange of the array index overlaps the
integer subrange for the array length. On the other hand, the TS compiler for Typed
Smalltalk [8, 11, 13] is able to optimize many of these bounds checks away, since
it uses simple theorem proving to propagate the results of conditional expressions
and thus avoid repeated tests, such as that the index is less than the array length.
However, their implementation only uses a single premise at a time to evaluate
conditional expressions, whereas our integer subrange types can represent the
combined effects of several comparisons. More work is needed to explore these
approaches.

The TS compiler for Typed Smalltalk performs an optimization similar to
message splitting. A basic block with multiple predecessors may be copied and
some of its predecessors rerouted to the copy if a conditional expression in the
basic block may be eliminated for a subset of the original block’s predecessors; this
is similar to local message splitting. An extension is proposed that could also copy
blocks that intervened between the block containing the conditional and the prede-
cessor(s) that would enable eliminating the conditional, similarly to extended
message splitting. However, these techniques only apply to eliminating conditional
expressions, and is performed after type analysis and message inlining has been
completed. Our extended message splitting is performed at type analysis time as
part of message inlining, and additionally can be used to split branches of the
control flow graph based on any other information available at type analysis time,
such as splitting for available values [1] in order to perform more common subex-
pression elimination.

Extended message splitting with iterative type analysis may lead to more than
one version of a loop being compiled, each for different initial type bindings. This
is similar to an optimization in some parallelizing Fortran compilers called two-
version loops [17]. If a loop could be parallelized if certain run-time conditions
held (e.g. that some variable was positive), then a compiler could insert a run-time
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test for the desired conditions before the loop, and branch to either a parallelized
version or a sequential version.

Our type analysis is also similar to partial evaluation [19]. Type analysis is a form
of abstract interpretation of the nodes in the control flow graph using compile-time
types instead of run-time values. Our system partially-evaluates methods with
respect to the customized receiver type to produce an optimized version of the
method specific to that receiver type. Within the method, type analysis propagates
type information in a similar manner as partial evaluators propagate constant infor-
mation. However, our compiler terminates over all input programs, while partial
evaluators traditionally have been allowed to go into infinite loops if the input
program contains an infinite loop. Partial evaluators also support more complex
descriptions of their input data, and generate specialized versions of residual (non-
inlined) function calls to propagate type information across procedure calls; our
SELF compiler performs no interprocedural analysis or type propagation across
non-inlined message sends.

8 Conclusions

Static type analysis is feasible even in a dynamically-typed object-oriented
language like SELF. Our type analysis system computes enough static information
to eliminate many costly message sends and run-time type tests. Value types serve
to propagate constants throughout the control flow graph, while integer subrange
types computed from arithmetic and comparison primitives are used to avoid over-
flow checks and array bounds checks in a language with no built-in control struc-
tures. Iterative type analysis with recompilation serves to compute accurate type
information for variables used within loops.

Type information lost by control flow merges can be regained using extended
message splitting. Extended message splitting is especially important within loops,
and may lead to more than one version of a loop being generated. This is accom-
plished simply by allowing loop heads and tails to be split like other nodes; no extra
implementation effort is needed to implement multi-version loops. Typically, one
version of a loop will work for the common case types (e.g. integers and arrays),
and contain no type tests and few overflow checks. Another version of the loop will
be more general and contain more type tests and error checks, but will only be
executed for unusual run-time type conditions.

Iterative type analysis, integer subrange analysis, and extended message splitting
are powerful new techniques that have nearly doubled the performance of our SELF

compiler. SELF now runs at nearly half the speed of optimized C, without sacri-
ficing dynamic typing, user-defined control structures, automatic garbage collec-
tion, or source-level debugging. We feel that this new-found level of performance
is making dynamically-typed object-oriented languages practical, and we hope
they will become more widely accepted.
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Appendix A Performance Data

Compiled Code Speed (as a percentage of optimized C)

benchmark ST-80 old SELF-89 old SELF-90 new SELF1

stanford

perm 7% 18% 13% 24%
perm-oo 8% 28% 20% 56%

towers 8% 21% 16% 23%
towers-oo 19% 34% 21% 43%

queens 9% 19% 14% 26%
queens-oo 10% 34% 16% 35%

intmm 10% 16% 19% 35%
intmm-oo 6% 2 22% 40%

puzzle 5% 13% 9% 19%

quick 9% 19% 14% 28%
quick-oo 10% 21% 17% 40%

bubble 6% 10% 9% 22%
bubble-oo 7% 14% 9% 63%

tree 53% 48% 41% 47%
tree-oo 80% 56% 69% 91%

small

sieve 5% 7% 23%

sumTo 10% 22% 11% 24%
sumFromTo 10% 10% 21%
sumToConst 10% 11% 33%

atAllPut 6% 12% 53%

richards3 9% 26% 17% 21%

1Since this paper was originally published, the compiler’s implementation has been refined.
Execution performance is now faster than reported in this paper (over 60% the speed of
optimized C for the stanford and stanford-oo benchmarks).

2Empty entries in the performance tables indicate unavailable information.
3See section 6.1 for a discussion of the performance results for richards.
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Appendix B Code Space

Compiled Code Size (in kilobytes)

benchmark Optimized C old SELF-90 new SELF

stanford

perm 2.4 7.5 5.8
perm-oo - 10.1 7.1
towers 3.1 12.1 16.2
towers-oo - 7.0 7.4
queens 2.5 11.7 12.0
queens-oo - 9.1 8.0
intmm 2.5 11.2 5.7
intmm-oo - 18.5 8.3
puzzle 5.0 81.3 41.3
quick 2.8 14.1 11.9
quick-oo - 16.2 10.2
bubble 2.7 11.5 6.7
bubble-oo - 8.0 5.9
tree 3.3 13.2 9.5
tree2 - 12.1 7.2

small

sieve 0.5 5.3 1.5
sumTo 2.6 1.6
sumFromTo 2.9 1.8
sumToConst 2.6 0.8
atAllPut 2.2 0.9

richards 6.1 34.3 25.5
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Appendix C Compile Time

Compile Time (in seconds of CPU time)

benchmark Optimized C old SELF-90 new SELF1

stanford

perm 2.8 0.58 11.8
perm-oo - 0.85 19.8
towers 3.7 0.73 31.9
towers-oo - 0.37 7.6
queens 3.1 0.71 65.4
queens-oo - 0.62 25.2
intmm 2.9 0.84 20.7
intmm-oo - 1.1 30.1
puzzle 9.1 6.9 362.3
quick 3.0 0.70 122.9
quick-oo - 0.90 123.3
bubble 2.9 0.63 15.9
bubble-oo - 0.55 21.5
tree 3.9 0.56 10.2
tree-oo - 0.74 7.0

small

sieve 1.6 0.40 6.4
sumTo 0.31 5.2
sumFromTo 0.29 5.7
sumToConst 0.32 2.9
atAllPut 0.20 1.4

richards 13.4 2.1 35.6

1Since this paper was originally published, the compiler’s implementation has been
refined. Compilation speed is now between one and two orders of magnitude faster (about
the same speed as the optimized C compiler).


